• Presencial
  • Training

Especialização Data Science Foundations


A quantidade de dados gerados pelas organizações tem vindo a crescer e consequentemente a necessidade de pessoas especializadas capazes de retirar valor desses dados. Quando devidamente explorados, permitem suportar decisões estratégicas para o negócio, criação de novos produtos, oferta de serviços mais personalizados entre muito outras potencialidades.  Data Science é por isso uma área transversal a todos o tipos de organizações e a todos os sectores, sendo o seu valor reconhecido pelas vantagens competitivas que potencia.

A Especialização Data Science Foundations fornece aos alunos os principais conceitos e ferramentas usadas por Data Scientists e Data Analysts.

 

Corpo Docente

Manuela Almeida

Associate Product Manager @ Talkdesk

Miguel Guedes

Diretor of Consulting @ CGI

Rodrigo Veríssimo

Senior Data Scientist @ Farfetch

Inês Rosete

Research Scientist @ Nimble Portal

Luís Silva

AI Engineer @ OutSystems

Cursos relacionados

Destinatários

Destina-se a todos aqueles que queiram adquirir conhecimentos que lhes permitam tirar partido desta nova capacidade estratégica, dotando-os dos conhecimentos necessários para conseguirem retirar o máximo valor dos dados e com isso aportarem valor competitivo para as organizações, nomeadamente profissionais que desempenhem funções diretas de tomada de decisão ou que intervenham em processos de análise de dados para a tomada de decisão sobre os negócios da organização.

Pré-requisitos

Os alunos deverão ter:

  • Conhecimentos básicos de Matemática e Estatística;
  • Conhecimentos básicos de utilização de uma qualquer linguagem de programação;
  • Bom nível de capacidade de leitura em língua inglesa.

Metodologia

Esta Especialização pode ser ministrada:

A metodologia pedagógica está focada no saber fazer, pelo que os conceitos e teoria de base são fortemente explorados em treino orientado para a colocação dos conhecimentos em prática.

Os alunos devem ter em conta que para além da exigência das aulas há a exigência de estudo adicional e de desenvolvimento de trabalhos práticos que permitam um cabal desenvolvimento do saber fazer nesta área de conhecimento.

Programa

  • Fundamentos de Ciência de Dados (9 horas)
    • Presencial (em Lisboa) / Online (outras localidades)
    • por: Manuela Almeida, Data Scientist na Talkdesk
  • Gestão do Processo de “Data Mining” (18 horas)
    • Presencial (em Lisboa) / Online (outras localidades)
    • por: Miguel Guedes, Diretor of Consulting na CGI
  • Aplicação da Ciência de Dados (18 horas)
    • Presencial (em Lisboa) / Online (outras localidades)
    • por: Rodrigo Veríssimo, Senior Data Scientist na Farfetch
  • Inferência Estatística (18 horas)
    • Presencial (no Porto) / Online (outras localidades)
    • por: Inês Rosete, Research Scientist na Nimble Portal
  • Programação em Python (27 horas)
    • Presencial (em Lisboa) / Online (outras localidades)
    • por: Luís Silva, AI Engineer na OutSystems
  • Fundamentos de ciência de dados
    • O que é Data Science (DS)
    • O papel da Data Science nos diferentes tipos de organizações
    • Estruturação de um projeto de Data Science
    • Resultados de um projeto de Data Science
    • As ferramentas básicas de um Data Scientist
  • Gestão do Processo de Data Mining
    • Etapas do processo de data mining
    • Tipos de questões e características de boas questões, expectativas e objetivos
    • Conceito de recolha de dados
    • Conceito de Exploratory Data Analysis
    • Conceito de inferência estatística
    • Conceito de modelos preditivos
    • Critério de paragem
    • Comunicação de resultados
  • Aplicação da ciência de dados
    • Comparação do cenário ideal versos o cenário real
    • Qualidade dos dados fonte
    • Factores que afectam os resultados
    • Inferência estatística versus predição
    • Dimensão dos dados
    • Interpretação de resultados
    • Escalabilidade
    • Reprodutibilidade
    • Casualidade versus confusão
    • A/B Testing
    • Manutenção dos modelos
  • Inferência estatística
    • Funções massa e densidade em probabilidade
    • Probabilidades condicionadas e teorema de Bayes
    • Valores expectáveis
    • Média, desvio padrão e variância
    • Distribuições binomial, normal e de Poisson
    • Teorema Limite Central
    • Testes de hipóteses
    • Significância estatística e valor P
    • Pacotes NumPy e statsModels
  • Programação com Python
    • Instalação do python
    • Básicos da programação com python
    • Pacotes Pandas
    • Jupyter notebooks
Rumos Badges Ao concluíres com aproveitamento esta formação, para além do Certificado de Frequência Rumos, receberás também um badge digital para partilhares com a tua rede profissional online. Sabe mais sobre os badges digitais aqui.

 

Especialização Data Science Foundations

Área

Dados

Como chegou até nós

Os seus dados pessoais são recolhidos em conformidade com o Regulamento Geral de Proteção de Dados (RGPD).

Consente que os seus dados sejam utilizados, nos termos da nossa Politica de Privacidade, para o contacto/envio de:

Ações de informação, de marketing de produtos e serviços, como campanhas e eventos?

Para mais informações, consulte a Política de Privacidade do Grupo Rumos.
pode retirar o seu consentimento a qualquer momento através do botão Cancelar subscrição ou Unsubscribe que estão presentes em cada comunicação enviada, bem como exercer os direitos descritos na politica de privacidade